Thursday 10 August 2017

Anpassungsfähig Durchschnitt Modell In R

Die ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen zur Prognose einer Zeitreihe, die durch Differenzierung (wenn nötig) vielleicht 8220 stationary8221 gemacht werden kann In Verbindung mit nichtlinearen Transformationen, wie zB Protokollierung oder Abscheidung (falls erforderlich). Eine Zufallsvariable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Reihe hat keinen Trend, ihre Variationen um ihren Mittelwert haben eine konstante Amplitude, und sie wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen Zufallszeitmuster sehen immer im statistischen Sinne gleich aus. Die letztgenannte Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder daß ihr Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieser Form kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn eines offensichtlich ist) könnte ein Muster einer schnellen oder langsamen mittleren Reversion oder einer sinusförmigen Oszillation oder eines schnellen Wechsels im Vorzeichen sein , Und es könnte auch eine saisonale Komponente. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Vorhersagegleichung für eine stationäre Zeitreihe ist eine lineare Gleichung (d. H. Regressionstyp), bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und oder Verzögerungen der Prognosefehler bestehen. Das heißt: Vorhergesagter Wert von Y eine Konstante undeine gewichtete Summe aus einem oder mehreren neuen Werten von Y und einer gewichteten Summe aus einem oder mehreren neuen Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, handelt es sich um ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit einer Standard-Regressions-Software ausgestattet werden kann. Beispielsweise ist ein autoregressives Modell erster Ordnung (8220AR (1) 8221) für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt) verzögert ist. Wenn einige der Prädiktoren Verzögerungen der Fehler sind, handelt es sich bei einem ARIMA-Modell nicht um ein lineares Regressionsmodell, da es keine Möglichkeit gibt, 8220last period8217s error8221 als eine unabhängige Variable festzulegen: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen von model8217s keine linearen Funktionen der Koeffizienten sind. Obwohl es sich um lineare Funktionen der vergangenen Daten handelt. Daher müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) abgeschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationären Reihe in der Prognose-Gleichung werden als autoregressiveQuot-Terme bezeichnet, die Verzögerungen der Prognosefehler werden als mittlere Mittelwert-Terme bezeichnet und eine Zeitreihe, die differenziert werden muß, um stationär gemacht zu werden, wird als eine integrierte quotierte Version einer stationären Reihe bezeichnet. Random-walk und random-trend Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA Modellen. Ein nicht seasonales ARIMA-Modell wird als ein quotarIMA-Modell (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nicht-Seasonal-Differenzen ist und q die Anzahl der verzögerten Prognosefehler ist Die Vorhersagegleichung. Die Vorhersagegleichung ist wie folgt aufgebaut. Zuerst bezeichne y die d - te Differenz von Y. Das bedeutet, daß die zweite Differenz von Y (der Fall d2) nicht die Differenz von 2 Perioden ist. Es ist vielmehr die erste Differenz der ersten Differenz. Was das diskrete Analogon einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe anstatt ihres lokalen Takts. In Bezug auf y. Ist die allgemeine Prognose-Gleichung: Hier sind die gleitenden Durchschnittsparameter (9528217s) so definiert, daß ihre Vorzeichen in der Gleichung negativ sind, und zwar nach der Konvention von Box und Jenkins. Einige Autoren und Software (einschließlich der Programmiersprache R) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt werden, gibt es keine Mehrdeutigkeit, aber es ist wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden dort die Parameter mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnt man die Reihenfolge der Differenzierung zu bestimmen (D) Notwendigkeit, die Serie zu stationarisieren und die Brutto-Merkmale der Saisonalität zu beseitigen, möglicherweise in Verbindung mit einer variationsstabilisierenden Transformation, wie beispielsweise Protokollierung oder Entleerung. Wenn Sie an diesem Punkt anhalten und voraussagen, dass die differenzierten Serien konstant sind, haben Sie lediglich ein zufälliges oder zufälliges Trendmodell angebracht. Die stationäre Reihe kann jedoch weiterhin autokorrelierte Fehler aufweisen, was nahe legt, daß in der Vorhersagegleichung auch einige Anzahl von AR-Terme (p 8805 1) und einige MA-MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die für eine gegebene Zeitreihe am besten sind, werden in späteren Abschnitten der Notizen (deren Links oben auf dieser Seite sind), aber eine Vorschau von einigen der Typen erörtert Von nicht-saisonalen ARIMA-Modellen, die üblicherweise angetroffen werden, ist unten angegeben. ARIMA (1,0,0) erstes autoregressives Modell: Wenn die Serie stationär und autokorreliert ist, kann sie vielleicht als ein Vielfaches ihres eigenen vorherigen Wertes plus einer Konstante vorhergesagt werden. Die Prognose-Gleichung ist in diesem Fall 8230, die Y auf sich selbst zurückgeblieben um eine Periode zurückgeblieben ist. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann würde der konstante Term nicht eingeschlossen werden. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell ein Mittelrücksetzverhalten, bei dem der nächste Periodenblockwert 981 1 mal als vorhergesagt werden sollte Weit weg vom Durchschnitt, wie dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelwert-Wiederherstellungsverhalten mit einer Veränderung von Vorzeichen, d. h. es sagt auch voraus, daß Y unterhalb der mittleren nächsten Periode liegt, wenn sie über dem Mittel dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)), würde es auch einen Yt-2-Term auf der rechten Seite geben, und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten kann ein ARIMA (2,0,0) - Modell ein System beschreiben, dessen mittlere Reversion sinusförmig oszillierend erfolgt, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Weg: Wenn die Reihe Y nicht stationär ist, ist das einfachste mögliche Modell ein zufälliges Wandermodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem die autoregressive Koeffizient ist gleich 1, dh eine Reihe mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann folgendermaßen geschrieben werden: wobei der konstante Term die mittlere Periodenperiodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein No-Intercept-Regressionsmodell angepasst werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es nur einen nicht sonderbaren Unterschied und einen konstanten Term enthält, wird er als quotarima (0,1,0) - Modell mit constant. quot klassifiziert. Das random-walk-ohne - driftmodell wäre ein ARIMA (0,1, 0) - Modell ohne konstantes ARIMA (1,1,0) differenziertes autoregressives Modell erster Ordnung: Wenn die Fehler eines Zufallswegmodells autokorreliert werden, kann das Problem möglicherweise durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung - - ie Durch Rückgang der ersten Differenz von Y auf sich selbst verzögert um eine Periode. Dies würde die folgende Vorhersagegleichung ergeben, die umgeordnet werden kann: Dies ist ein autoregressives Modell erster Ordnung mit einer Ordnung der Nichtsaisonaldifferenzierung und einem konstanten Term - d. e. Ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) ohne konstante einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem Random-Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Es sei daran erinnert, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschschwankungen um einen langsam variierenden Mittelwert aufweisen) das Zufallswegmodell nicht ebenso gut funktioniert wie ein gleitender Durchschnitt von vergangenen Werten. Mit anderen Worten, anstatt die letzte Beobachtung als Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt vergangener Werte, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl mathematisch äquivalenter Formen geschrieben werden. Von denen eine die sogenannte 8220-Fehlerkorrektur8221-Form ist, in der die vorhergehende Prognose in der Richtung ihres Fehlers angepasst wird: Weil e t-1 Y t-1 - 374 t-1 per Definition umgeschrieben werden kann : Es handelt sich um eine ARIMA (0,1,1) - konstante Vorhersagegleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung durch Angabe als ARIMA (0,1,1) - Modell ohne passen Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Denken Sie daran, dass im SES-Modell das durchschnittliche Alter der Daten in den 1-Periodenprognosen 1 945 beträgt, was bedeutet, dass sie tendenziell hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückbleiben werden. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA-Modells (0,1,1) ohne Konstante 1 (1 - 952 1) ist. Wenn beispielsweise 952 1 0,8 beträgt, ist das Durchschnittsalter 5. Da sich 952 1 1 nähert, wird das ARIMA-Modell (0,1,1) ohne Konstante zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Ansätze 0 wird es ein random-walk-ohne-Drift-Modell. What8217s der beste Weg, um für Autokorrelation zu korrigieren: Hinzufügen von AR-Begriffe oder Hinzufügen von MA-Begriffen In den vorherigen beiden Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Fußmodell auf zwei verschiedene Arten behoben: durch Hinzufügen eines Verzögerungswertes der differenzierten Reihe Auf die Gleichung oder das Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz am besten ist Eine Regel für diese Situation, die später noch ausführlicher diskutiert wird, besteht darin, dass die positive Autokorrelation normalerweise am besten durch Hinzufügen eines AR-Terms zum Modell behandelt wird und negative Autokorrelation in der Regel am besten durch Hinzufügen eines MA-Semester. In der Wirtschafts - und Wirtschaftszeitreihe entsteht häufig eine negative Autokorrelation als Artefakt der Differenzierung. (Im allgemeinen differenziert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation bewirken.) Daher wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Begriff begleitet wird, häufiger verwendet als ein ARIMA-Modell (1,1,0). ARIMA (0,1,1) mit konstanter einfacher exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell gewinnen Sie tatsächlich etwas Flexibilität. Zuerst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor von mehr als 1 in einem SES-Modell, das nach dem SES-Modellanpassungsverfahren üblicherweise nicht zulässig ist. Zweitens haben Sie die Möglichkeit, einen konstanten Term in das ARIMA-Modell zu integrieren, wenn Sie es wünschen, um einen durchschnittlichen Trend, der nicht Null ist, abzuschätzen. Das Modell ARIMA (0,1,1) mit Konstante hat die Vorhersagegleichung: Die Ein-Perioden-Prognosen aus diesem Modell sind qualitativ denjenigen des SES-Modells ähnlich, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise a ist (Deren Neigung gleich mu ist) und nicht eine horizontale Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei nicht-sauren Differenzen in Verbindung mit MA-Begriffen verwenden. Die zweite Differenz einer Folge Y ist nicht einfach die Differenz von Y und selbst von zwei Perioden verzögert, sondern sie ist die erste Differenz der ersten Differenz - i. e. Die Änderung in der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Yt - Yt - 1) - (Yt - 1 - Yt - 2) Yt - 2Yt - 1Yt - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie mißt zu einem gegebenen Zeitpunkt die Quota-Beschleunigungquot oder quotvequot in der Funktion. Das ARIMA (0,2,2) - Modell ohne Konstante sagt voraus, daß die zweite Differenz der Reihe eine lineare Funktion der letzten beiden Prognosefehler ist, die umgeordnet werden können: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten. Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein spezieller Fall. Es verwendet exponentiell gewichtete gleitende Mittelwerte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Reihe abzuschätzen. Die Langzeitprognosen von diesem Modell konvergieren zu einer Geraden, deren Steigung von dem durchschnittlichen Trend abhängt, der gegen Ende der Reihe beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte lineare Exponentialglättung. Dieses Modell ist in den begleitenden Dias auf ARIMA-Modellen dargestellt. Es extrapoliert die lokale Tendenz am Ende der Serie, sondern flacht es auf längere Prognose Horizonte, um eine Notiz von Konservatismus, eine Praxis, die empirische Unterstützung hat einzuführen. Siehe den Artikel auf quotWarum die Damped Trend Werke von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, bei Modellen zu bleiben, bei denen mindestens einer von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) anzubringen, da dies zu Überbeanspruchungen führen kann Die in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen näher erläutert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen lassen sich einfach in einer Tabellenkalkulation implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte von ursprünglichen Zeitreihen und vergangenen Werten der Fehler bezieht. Auf diese Weise können Sie eine ARIMA-Prognosekalkulation einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen anderswo auf der Spreadsheet gespeichert sind. Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Letzten Artikel sahen wir zufällig Wanderungen und weißen Lärm als grundlegende Zeitreihen-Modelle für bestimmte Finanzinstrumente, wie tägliche Aktien-und Aktienindex Preise. Wir fanden, dass in einigen Fällen ein zufälliges Wanderungsmodell nicht ausreicht, um das vollständige Autokorrelationsverhalten des Instruments zu erfassen, das anspruchsvollere Modelle motiviert. In den nächsten Artikeln werden wir drei Modelltypen diskutieren, nämlich das Autoregressive (AR) - Modell der Ordnung p, das Moving Average (MA) - Modell der Ordnung q und das gemischte Autogressive Moving Average (ARMA) - Modell der Ordnung p , Q. Diese Modelle werden uns helfen zu erfassen oder zu erklären, mehr der seriellen Korrelation in einem Instrument. Letztlich werden sie uns ein Mittel zur Prognose der künftigen Preise bieten. Es ist jedoch bekannt, dass finanzielle Zeitreihen eine Eigenschaft besitzen, die als Volatilitäts-Clusterung bekannt ist. Das heißt, die Flüchtigkeit des Instruments ist nicht zeitlich konstant. Der technische Begriff für dieses Verhalten wird als bedingte Heteroskedastizität bezeichnet. Da die AR-, MA - und ARMA-Modelle nicht bedingt heteroskedastisch sind, dh sie nicht das Volatilitäts-Clustering berücksichtigen, benötigen wir letztlich ein anspruchsvolleres Modell für unsere Prognosen. Zu diesen Modellen gehören das Autogressive Conditional Heteroskedastic (ARCH) Modell und das Generalized Autogressive Conditional Heteroskedastic (GARCH) Modell und die vielen Varianten davon. GARCH ist in Quantfinance besonders bekannt und wird vor allem für finanzielle Zeitreihensimulationen als Mittel zur Risikoabschätzung eingesetzt. Wie bei allen QuantStart-Artikeln möchte ich aber diese Modelle aus einfacheren Versionen aufbauen, damit wir sehen können, wie jede neue Variante unsere Vorhersagefähigkeit ändert. Trotz der Tatsache, dass AR, MA und ARMA relativ einfache Zeitreihenmodelle sind, sind sie die Grundlage für kompliziertere Modelle wie den Autoregressive Integrated Moving Average (ARIMA) und die GARCH-Familie. Daher ist es wichtig, dass wir sie studieren. Einer unserer ersten Trading-Strategien in der Zeitreihe Artikel-Serie wird es sein, ARIMA und GARCH zu kombinieren, um die Preise n Perioden im Voraus vorherzusagen. Allerdings müssen wir warten, bis wir beide diskutiert sowohl ARIMA und GARCH separat, bevor wir sie auf eine echte Strategie anwenden Wie werden wir in diesem Artikel werden wir einige neue Zeitreihen-Konzepte, die gut für die restlichen Methoden, nämlich streng zu skizzieren Stationarität und dem Akaike-Informationskriterium (AIC). Im Anschluss an diese neuen Konzepte werden wir dem traditionellen Muster für das Studium neuer Zeitreihenmodelle folgen: Begründung - Die erste Aufgabe ist es, einen Grund dafür zu liefern, warum sich ein bestimmtes Modell als Quants interessierte. Warum stellen wir das Zeitreihenmodell vor Welche Auswirkungen kann es erfassen Was gewinnen wir (oder verlieren) durch Hinzufügen zusätzlicher Komplexität Definition - Wir müssen die vollständige mathematische Definition (und damit verbundene Notation) des Zeitreihenmodells zur Minimierung bereitstellen Jede Zweideutigkeit. Eigenschaften der zweiten Ordnung - Wir diskutieren (und in einigen Fällen) die Eigenschaften zweiter Ordnung des Zeitreihenmodells, das sein Mittel, seine Varianz und seine Autokorrelationsfunktion enthält. Correlogram - Wir verwenden die Eigenschaften zweiter Ordnung, um ein Korrektramm einer Realisierung des Zeitreihenmodells zu zeichnen, um sein Verhalten zu visualisieren. Simulation - Wir simulieren Realisierungen des Zeitreihenmodells und passen dann das Modell an diese Simulationen an, um sicherzustellen, dass wir genaue Implementierungen haben und den Anpassungsprozess verstehen. Echte Finanzdaten - Wir passen das Zeitreihenmodell auf echte Finanzdaten an und betrachten das Korrektramm der Residuen, um zu sehen, wie das Modell die serielle Korrelation in der ursprünglichen Serie berücksichtigt. Vorhersage - Wir erstellen n-Schritt-Voraus-Prognosen des Zeitreihenmodells für besondere Realisierungen, um letztendlich Handelssignale zu erzeugen. Fast alle Artikel, die ich auf Zeitreihenmodellen schreibe, werden in dieses Muster fallen und es wird uns erlauben, die Unterschiede zwischen jedem Modell leicht zu vergleichen, da wir weitere Komplexität hinzufügen. Wurden zu Beginn mit Blick auf strenge Stationarität und die AIC. Strengst stationär Wir haben die Definition der Stationarität in dem Artikel über die serielle Korrelation. Da wir jedoch in den Bereich vieler Finanzserien mit verschiedenen Frequenzen treten, müssen wir sicherstellen, dass unsere (eventuellen) Modelle die zeitlich variierende Volatilität dieser Serien berücksichtigen. Insbesondere müssen wir ihre Heteroskedastizität berücksichtigen. Wir werden auf dieses Problem stoßen, wenn wir versuchen, bestimmte Modelle zu historischen Serien zu passen. Grundsätzlich können nicht alle seriellen Korrelationen in den Resten von eingebauten Modellen berücksichtigt werden, ohne Heteroskedastizität zu berücksichtigen. Das bringt uns zurück zur Stationarität. Eine Serie ist nicht stationär in der Varianz, wenn sie zeitvariable Volatilität hat, per Definition. Dies motiviert eine rigorosere Definition der Stationarität, nämlich eine strenge Stationarität: Strengst stationäre Serie Ein Zeitreihenmodell ist streng stationär, wenn die gemeinsame statistische Verteilung der Elemente x, ldots, x die gleiche ist wie die von xm, ldots, xm, Für alle ti, m. Man kann an diese Definition nur denken, daß die Verteilung der Zeitreihen für jede zeitliche Verschiebung unverändert bleibt. Insbesondere sind das Mittel und die Varianz rechtzeitig für eine streng stationäre Reihe konstant und die Autokovarianz zwischen xt und xs (nur) hängt nur von der absoluten Differenz von t und s, t-s ab. In zukünftigen Beiträgen werden wir streng stationäre Serien besprechen. Akaike Information Criterion Ich erwähnte in früheren Artikeln, dass wir schließlich zu prüfen, wie die Wahl zwischen getrennten besten Modelle. Dies gilt nicht nur für die Zeitreihenanalyse, sondern auch für das maschinelle Lernen und generell für die Statistik im Allgemeinen. Die beiden Hauptmethoden (vorläufig) sind das Akaike Information Criterion (AIC) und das Bayesian Information Criterion (wie wir mit unseren Artikeln über Bayesian Statistics weiter vorankommen). Nun kurz die AIC, wie es in Teil 2 des ARMA Artikel verwendet werden. AIC ist im Wesentlichen ein Hilfsmittel zur Modellauswahl. Das heißt, wenn wir eine Auswahl von statistischen Modellen (einschließlich Zeitreihen) haben, dann schätzt die AIC die Qualität jedes Modells, relativ zu den anderen, die wir zur Verfügung haben. Es basiert auf Informationstheorie. Das ist ein sehr interessantes, tiefes Thema, das wir leider nicht in zu viel Detail gehen können. Es versucht, die Komplexität des Modells, die in diesem Fall bedeutet die Anzahl der Parameter, wie gut es passt die Daten. Lets eine Definition: Akaike Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit. Dann ist das Akaike Information Criterion gegeben durch: Das bevorzugte Modell, aus einer Auswahl von Modellen, hat die minium AIC der Gruppe. Sie können sehen, dass die AIC wächst mit der Anzahl der Parameter, k, erhöht, aber reduziert wird, wenn die negative Log-Likelihood erhöht. Im Wesentlichen bestraft sie Modelle, die übermäßig sind. Wir werden AR, MA und ARMA Modelle von unterschiedlichen Aufträgen erstellen und eine Möglichkeit, das beste Modell zu wählen, das zu einem bestimmten Datensatz passt, ist, die AIC zu verwenden. Dies ist, was gut tun, im nächsten Artikel, vor allem für ARMA Modelle. Autoregressive (AR) Modelle der Ordnung p Das erste Modell, das die Grundlage von Teil 1 bildet, ist das autoregressive Modell der Ordnung p, oft verkürzt zu AR (p). Im vorherigen Artikel betrachteten wir den zufälligen Weg. Wobei jeder Term xt nur von dem vorherigen Term x und einem stochastischen weißen Rauschterm abhängt, wt: Das autoregressive Modell ist einfach eine Erweiterung des zufälligen Wegs, der Terme weiter zurück in der Zeit enthält. Die Struktur des Modells ist linear. Das heißt, das Modell hängt linear von den vorherigen Bedingungen ab, wobei für jeden Term Koeffizienten vorliegen. Dies ist, wo die regressive kommt aus der autoregressive. Es ist im Wesentlichen ein Regressionsmodell, bei dem die vorherigen Begriffe die Prädiktoren sind. Autoregressives Modell der Ordnung p Ein Zeitreihenmodell ist ein autoregressives Modell der Ordnung p. AR (p), wenn: begin xt alpha1 x ldots alphap x wt sum p alpha x wt end Wo ist weißes Rauschen und alpha in mathbb, mit alphap neq 0 für einen autoregressiven p-order Prozess. Wenn wir den Backward Shift Operator betrachten. (Siehe vorheriger Artikel), dann können wir das obige als eine Funktion theta folgendermaßen umschreiben: begin thetap () xt (1 - alpha1 - alpha2 2 - ldots - alphap) xt wt Ende Vielleicht das erste, was über das AR (p) Ist, dass ein zufälliger Weg einfach AR (1) mit alpha1 gleich Eins ist. Wie oben erwähnt, ist das autogressive Modell eine Erweiterung des zufälligen Weges, so dass dies sinnvoll ist. Es ist einfach, Vorhersagen mit dem AR (p) - Modell zu jeder Zeit t vorzunehmen, sobald wir die alphai-Koeffizienten, unsere Schätzung, bestimmt haben Wird einfach: anfangen Hut t alpha1 x ldots alphap x end So können wir n-Schritt voraus Prognosen durch die Herstellung Hut t, Hut, Hut, etc. bis zu Hut. Tatsächlich werden wir, wenn wir die ARMA-Modelle in Teil 2 betrachten, die R-Vorhersagefunktion verwenden, um Prognosen (zusammen mit Standardfehler-Konfidenzintervallbändern) zu erzeugen, die uns helfen, Handelssignale zu erzeugen. Stationarität für autoregressive Prozesse Eines der wichtigsten Aspekte des AR (p) - Modells ist, dass es nicht immer stationär ist. Tatsächlich hängt die Stationarität eines bestimmten Modells von den Parametern ab. Ive berührte dieses vorher in einem vorhergehenden Artikel. Um zu bestimmen, ob ein AR (p) - Prozeß stationär ist oder nicht, müssen wir die charakteristische Gleichung lösen. Die charakteristische Gleichung ist einfach das autoregressive Modell, geschrieben in Rückwärtsverschiebung Form, auf Null gesetzt: Wir lösen diese Gleichung für. Damit das bestimmte autoregressive Verfahren stationär ist, brauchen wir alle Absolutwerte der Wurzeln dieser Gleichung, um Eins zu übersteigen. Dies ist eine äußerst nützliche Eigenschaft und ermöglicht es uns schnell zu berechnen, ob ein AR (p) - Prozeß stationär ist oder nicht. Wir betrachten einige Beispiele, um diese Idee konkret zu machen: Random Walk - Der AR (1) Prozess mit alpha1 1 hat die charakteristische Gleichung theta 1 -. Offensichtlich hat diese Wurzel 1 und als solche ist nicht stationär. AR (1) - Wenn wir alpha1 frac wählen, erhalten wir xt frac x wt. Dies ergibt eine charakteristische Gleichung von 1 - frac 0, die eine Wurzel von 4 gt 1 hat und somit dieses AR (1) - Verfahren stationär ist. AR (2) - Wenn wir alpha1 alpha2 frac setzen, erhalten wir xt frac x frac x wt. Seine charakteristische Gleichung wird - frac () () 0, die zwei Wurzeln von 1, -2 ergibt. Da es sich um eine Einheitswurzel handelt, handelt es sich um eine nichtstationäre Serie. Andere AR (2) - Serien können jedoch stationär sein. Eigenschaften der zweiten Ordnung Der Mittelwert eines AR (p) - Prozesses ist Null. Allerdings sind die Autokovarianzen und Autokorrelationen durch rekursive Funktionen, bekannt als die Yule-Walker-Gleichungen gegeben. Die vollständigen Eigenschaften sind unten angegeben: begin mux E (xt) 0 end begin gammak sum p alpha gamma, enspace k 0 end begin rhok sum p alphai rho, enspace k 0 end Beachten Sie, dass es notwendig ist, die alpha-Parameterwerte vor zu kennen Berechnen der Autokorrelationen. Nachdem wir die Eigenschaften zweiter Ordnung angegeben haben, können wir verschiedene Ordnungen von AR (p) simulieren und die entsprechenden Korrektramme darstellen. Simulationen und Correlogramme Beginnen wir mit einem AR (1) - Prozess. Dies ist ähnlich einem zufälligen Weg, außer dass alpha1 nicht gleich Eins haben muss. Unser Modell wird alpha1 0,6 haben. Der R-Code für die Erzeugung dieser Simulation ist wie folgt gegeben: Beachten Sie, dass unsere for-Schleife von 2 bis 100, nicht 1 bis 100, als xt-1 ausgeführt wird, wenn t0 nicht indexierbar ist. Ähnlich für AR (p) Prozesse höherer Ordnung muss t in dieser Schleife von p bis 100 reichen. Wir können die Realisierung dieses Modells und seines zugehörigen Korrelogramms mit Hilfe der Layout-Funktion darstellen: Wir wollen nun versuchen, einen AR (p) - Prozeß an die soeben erzeugten simulierten Daten anzupassen, um zu sehen, ob wir die zugrunde liegenden Parameter wiederherstellen können. Sie können daran erinnern, dass wir ein ähnliches Verfahren in dem Artikel über weiße Rauschen und zufällige Wanderungen durchgeführt. Wie sich herausstellt, bietet R einen nützlichen Befehl ar, um autoregressive Modelle zu passen. Wir können diese Methode verwenden, um uns zuerst die beste Ordnung p des Modells zu erzählen (wie durch die AIC oben bestimmt) und liefern uns mit Parameterschätzungen für das alphai, die wir dann verwenden können, um Konfidenzintervalle zu bilden. Für die Vollständigkeit können wir die x-Reihe neu erstellen: Jetzt verwenden wir den ar-Befehl, um ein autoregressives Modell an unseren simulierten AR (1) - Prozess anzupassen, wobei die maximale Wahrscheinlichkeitsschätzung (MLE) als Anpassungsverfahren verwendet wird. Wir werden zunächst die beste erhaltene Ordnung extrahieren: Der ar Befehl hat erfolgreich festgestellt, dass unser zugrunde liegendes Zeitreihenmodell ein AR (1) Prozess ist. Wir erhalten dann die Alpha-Parameter (s) Schätzungen: Die MLE-Prozedur hat eine Schätzung erzeugt, Hut 0,523, die etwas niedriger als der wahre Wert von alpha1 0,6 ist. Schließlich können wir den Standardfehler (mit der asymptotischen Varianz) verwenden, um 95 Konfidenzintervalle um den / die zugrunde liegenden Parameter zu konstruieren. Um dies zu erreichen, erstellen wir einfach einen Vektor c (-1.96, 1.96) und multiplizieren ihn dann mit dem Standardfehler: Der wahre Parameter fällt in das 95 Konfidenzintervall, da wir von der Tatsache erwarten, dass wir die Realisierung aus dem Modell spezifisch generiert haben . Wie wäre es, wenn wir die alpha1 -0.6 ändern, können wir wie folgt ein AR (p) - Modell mit ar: Wiederherstellen wir die richtige Reihenfolge des Modells, mit einer sehr guten Schätzung Hut -0.597 von alpha1-0.6. Wir sehen auch, dass der wahre Parameter wieder innerhalb des Konfidenzintervalls liegt. Fügen wir mehr Komplexität zu unseren autoregressiven Prozessen hinzu, indem wir ein Modell der Ordnung 2 simulieren. Insbesondere setzen wir alpha10.666, setzen aber auch alpha2 -0.333. Heres den vollständigen Code, um die Realisierung zu simulieren und zu plotten, sowie das Korrelogram für eine solche Serie: Wie zuvor können wir sehen, dass sich das Korrelogramm signifikant von dem des weißen Rauschens unterscheidet, wie man es erwarten kann. Es gibt statistisch signifikante Peaks bei k1, k3 und k4. Wieder einmal wollten wir den ar-Befehl verwenden, um ein AR (p) - Modell zu unserer zugrundeliegenden AR (2) Realisierung zu passen. Die Prozedur ist ähnlich wie bei der AR (1) - Sitzung: Die korrekte Reihenfolge wurde wiederhergestellt und die Parameterschätzungen Hut 0.696 und Hut -0.395 sind nicht zu weit weg von den wahren Parameterwerten von alpha10.666 und alpha2-0.333. Beachten Sie, dass wir eine Konvergenz-Warnmeldung erhalten. Beachten Sie auch, dass R tatsächlich die arima0-Funktion verwendet, um das AR-Modell zu berechnen. AR (p) - Modelle sind ARIMA (p, 0, 0) - Modelle und somit ein AR-Modell ein Spezialfall von ARIMA ohne Moving Average (MA) - Komponente. Nun auch mit dem Befehl arima, um Konfidenzintervalle um mehrere Parameter zu erstellen, weshalb wir vernachlässigt haben, es hier zu tun. Nachdem wir nun einige simulierte Daten erstellt haben, ist es an der Zeit, die AR (p) - Modelle auf finanzielle Asset-Zeitreihen anzuwenden. Financial Data Amazon Inc. Lets beginnen mit dem Erwerb der Aktienkurs für Amazon (AMZN) mit quantmod wie im letzten Artikel: Die erste Aufgabe ist es, immer den Preis für eine kurze visuelle Inspektion. In diesem Fall auch die täglichen Schlusskurse: Youll bemerken, dass quantmod einige Formatierungen für uns, nämlich das Datum, und ein etwas hübscheres Diagramm als die üblichen R-Diagramme hinzufügt: Wir werden jetzt die logarithmische Rückkehr von AMZN und dann die erste nehmen Um die ursprüngliche Preisreihe von einer nichtstationären Serie auf eine (potentiell) stationäre zu konvertieren. Dies ermöglicht es uns, Äpfel mit Äpfeln zwischen Aktien, Indizes oder anderen Vermögenswerten zu vergleichen, für die Verwendung in späteren multivariaten Statistiken, wie bei der Berechnung einer Kovarianzmatrix. Wenn Sie eine ausführliche Erklärung, warum Protokoll Rückkehr bevorzugen möchten, werfen Sie einen Blick auf diesen Artikel über bei Quantivity. Erstellt eine neue Serie, amznrt. Um unsere differenzierten Logarithmen zurückzuhalten: Wieder einmal können wir die Serie darstellen: In diesem Stadium wollen wir das Korrektramm zeichnen. Sie suchten, um zu sehen, ob die differenzierte Reihe wie weißes Rauschen aussieht. Wenn es nicht dann gibt es unerklärliche serielle Korrelation, die durch ein autoregressives Modell erklärt werden könnte. Wir bemerken einen statistisch signifikanten Peak bei k2. Daher gibt es eine vernünftige Möglichkeit der unerklärlichen seriellen Korrelation. Seien Sie sich jedoch bewusst, dass dies aufgrund der Stichprobe. Als solches können wir versuchen, ein AR (p) - Modell an die Serie anzupassen und Konfidenzintervalle für die Parameter zu erzeugen: Die Anpassung des ar-autoregressiven Modells an die erste Reihe differenzierte Serien von Logarithmen erzeugt ein AR (2) - Modell mit Hut -0,0278 Und hat -0.0687. Ive auch die aysmptotische Varianz, so dass wir berechnen können Standard-Fehler für die Parameter und erzeugen Vertrauen Intervalle. Wir wollen sehen, ob null Teil des 95 Konfidenzintervalls ist, als ob es ist, es reduziert unser Vertrauen, dass wir ein echtes zugrunde liegendes AR (2) - Verfahren für die AMZN-Serie haben. Um die Konfidenzintervalle auf der 95-Ebene für jeden Parameter zu berechnen, verwenden wir die folgenden Befehle. Wir nehmen die Quadratwurzel des ersten Elements der asymptotischen Varianzmatrix auf, um einen Standardfehler zu erzeugen, dann erstellen Sie Konfidenzintervalle, indem wir sie mit -1,96 bzw. 1,96 für die 95-Ebene multiplizieren: Beachten Sie, dass dies bei Verwendung der Arima-Funktion einfacher wird , Aber gut bis Teil 2 warten, bevor es richtig eingeführt. Somit können wir sehen, dass für alpha1 Null innerhalb des Konfidenzintervalls enthalten ist, während für alpha2 Null nicht im Konfidenzintervall enthalten ist. Daher sollten wir sehr vorsichtig sein, wenn wir denken, dass wir tatsächlich ein zugrundeliegendes generatives AR (2) - Modell für AMZN haben. Insbesondere berücksichtigen wir, dass das autoregressive Modell nicht das Volatilitäts-Clustering berücksichtigt, was zu einer Clusterbildung der seriellen Korrelation in finanziellen Zeitreihen führt. Wenn wir die ARCH - und GARCH-Modelle in späteren Artikeln betrachten, werden wir dies berücksichtigen. Wenn wir kommen, um die volle Arima-Funktion in den nächsten Artikel verwenden, werden wir Vorhersagen der täglichen Log-Preis-Serie, um uns zu ermöglichen, Trading-Signale zu schaffen. SampP500 US Equity Index Zusammen mit einzelnen Aktien können wir auch den US Equity Index, den SampP500, berücksichtigen. Lets alle vorherigen Befehle zu dieser Serie und produzieren die Plots wie zuvor: Wir können die Preise: Wie zuvor, erstellen Sie auch die erste Ordnung Differenz der Log-Schlusskurse: Wieder einmal können wir die Serie plotten: Es ist klar Aus diesem Diagramm, dass die Volatilität nicht in der Zeit stationär ist. Dies spiegelt sich auch in der Darstellung des Korrelogramms wider. Es gibt viele Peaks, einschließlich k1 und k2, die statistisch signifikant über ein weißes Rauschmodell hinausgehen. Darüber hinaus sehen wir Hinweise auf Langzeitgedächtnisprozesse, da es einige statistisch signifikante Peaks bei k16, k18 und k21 gibt: Letztendlich benötigen wir ein komplexeres Modell als ein autoregressives Modell der Ordnung p. Allerdings können wir in diesem Stadium noch versuchen, ein solches Modell anzupassen. Wir sehen, was wir bekommen, wenn wir dies tun: Mit ar erzeugt ein AR (22) - Modell, dh ein Modell mit 22 Nicht-Null-Parametern Was bedeutet dies sagen uns Es ist bezeichnend, dass es wahrscheinlich viel mehr Komplexität in der seriellen Korrelation als Ein einfaches lineares Modell der vergangenen Preise kann wirklich erklären. Jedoch wussten wir dies bereits, weil wir sehen können, dass es eine signifikante serielle Korrelation in der Volatilität gibt. Betrachten wir zum Beispiel die sehr volatile Periode um 2008. Dies motiviert den nächsten Satz von Modellen, nämlich den Moving Average MA (q) und den autoregressiven Moving Average ARMA (p, q). Nun lernen Sie über diese beiden in Teil 2 dieses Artikels. Wie wir immer wieder erwähnen, werden diese letztlich zur ARIMA - und GARCH-Modellfamilie führen, die beide eine viel bessere Anpassung an die serielle Korrelationskomplexität des Samp500 bieten. Dadurch können wir unsere Prognosen signifikant verbessern und letztendlich rentabler gestalten. Klicken Sie unten, um mehr darüber zu erfahren. Die Informationen auf dieser Website ist die Meinung der einzelnen Autoren auf der Grundlage ihrer persönlichen Beobachtung, Forschung und jahrelange Erfahrung. Der Herausgeber und seine Autoren sind nicht registrierte Anlageberater, Rechtsanwälte, CPAs oder andere Finanzdienstleister und machen keine Rechts-, Steuer-, Rechnungswesen, Anlageberatung oder andere professionelle Dienstleistungen. Die Informationen, die von dieser Web site angeboten werden, sind nur allgemeine Ausbildung. Weil jeder Einzelne sachliche Situation anders ist, sollte der Leser seinen persönlichen Berater suchen. Weder der Autor noch der Herausgeber übernehmen jegliche Haftung oder Verantwortung für Fehler oder Unterlassungen und haben weder eine Haftung noch Verantwortung gegenüber Personen oder Körperschaften in Bezug auf Schäden, die direkt oder indirekt durch die auf dieser Website enthaltenen Informationen verursacht oder vermutet werden. Benutzung auf eigene Gefahr. Darüber hinaus kann diese Website erhalten finanzielle Entschädigung von den Unternehmen erwähnt durch Werbung, Affiliate-Programme oder auf andere Weise. Preise und Angebote von Inserenten auf dieser Website ändern sich häufig, manchmal ohne Vorankündigung. Während wir uns bemühen, rechtzeitige und genaue Informationen aufrechtzuerhalten, können Angebot Details veraltet sein. Besucher sollten daher die Bedingungen dieser Angebote vor der Teilnahme an ihnen überprüfen. Der Autor und sein Herausgeber haften nicht für die Aktualisierung der Informationen und haften nicht für Inhalte, Produkte und Dienstleistungen von Drittanbietern, auch wenn sie über Hyperlinks oder Anzeigen auf dieser Website aufgerufen werden.


No comments:

Post a Comment